1. Suppose you have 3 algorithms A_1, A_2, A_3 all for the same problem. Assume, all input can be divided into 4 groups, say, X_1, X_2, X_3, X_4 and you happen to know performance, in terms of running time, of these algorithms over all possible inputs of size n, for each group.

<table>
<thead>
<tr>
<th></th>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>X_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_1</td>
<td>$5n^3 + n^{3/2}$</td>
<td>$100n^4 + n \log n$</td>
<td>$0.1n^2 + 2^n$</td>
<td>$n^5 + 10^{10} \log n$</td>
</tr>
<tr>
<td>A_2</td>
<td>10^6n^2</td>
<td>$0.0001n^2$</td>
<td>$n^2 + 900n + 5n \log n$</td>
<td>$500n^2 + 100n \log n$</td>
</tr>
<tr>
<td>A_3</td>
<td>$0.05n^3 \log n$</td>
<td>$100n^3 \log n$</td>
<td>$125n^4 \log n + n^3 \log n$</td>
<td>$n \log n + 0.01n^3$</td>
</tr>
</tbody>
</table>

Give performance of A_1, A_2, A_3 in terms of $O()$, $\Omega()$, $\Theta()$ notation. **6 pts**
2. Assume X is an algebraic object whose multiplication is relatively expensive. We want to compute X^n for various n.

- **A**
 Assume you can store as many X^j as you wish, how would you compute X^n for $n=101, 300, 544$. Indicate which X^j you store and how do you compute desired X^n's? (Show which multiplications)
 6 pts

- **B** Given $b(0), b(1), b(k)$, binary expansion of n, with $b(k)=1$, how would you compute X^n without storing all intermediate results. Write an algorithm/pseudo-code!
 4 pts
3. **Fibonacci**

Given \(F(n + 2) = F(n + 1) + F(n) \) with \(F(0) = 0, F(1) = 1 \) you can compute a) as a recursion function, b) as an array using \(n \) addition, c) using matrix multiplication via

\[
A^1 = A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad A^n = \begin{bmatrix} F(n + 1) & F(n) \\ F(n) & F(n - 1) \end{bmatrix}
\]

Assume multiplication of two 2x2 matrix costs \(\alpha \) additions.

- Assume \(n = 2^k \) and \(\alpha = 2^l \). Compute cost of \(F(n) \) using b) and c) in terms of additions. Write an equation/inequality to determine when matrix multiplication becomes cheaper.
- For \(k = 2^l \) determine first \(l \) such that matrix multiplication is cheaper for \(t=10 \)
- For \(\alpha = 400 \) compute cost of computing \(F(n) \) for \(n=1536 \) using b) and c)
4. **merge sort**. Given the following list, apply merge sort. Show, in each stage sorted elements in a **box**. First row is unsorted list. Second row is the first stage indicating each sublist of a single element is sorted. 10 pts

<table>
<thead>
<tr>
<th>10</th>
<th>3</th>
<th>34</th>
<th>25</th>
<th>6</th>
<th>2</th>
<th>30</th>
<th>47</th>
<th>9</th>
<th>5</th>
<th>7</th>
<th>24</th>
<th>18</th>
<th>11</th>
<th>39</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3</td>
<td>34</td>
<td>25</td>
<td>6</td>
<td>2</td>
<td>30</td>
<td>47</td>
<td>9</td>
<td>5</td>
<td>7</td>
<td>24</td>
<td>18</td>
<td>11</td>
<td>39</td>
<td>28</td>
</tr>
</tbody>
</table>
5. We want to sort the elements 21 10 30 5 25 35 8 11 15 28 20 40 50 using quick sort: that is apply partition algorithm recursively. You pick first element of the list as the pivot element and continue until each set generated by partition algorithm is singleton. At each stage show pivot elements in circle or box, and show the result of partition in the next line. Show sets subject to partition between parenthesis. Singleton need not be shown between parenthesis.

\[
\begin{array}{c}
(21) \\
(10 30 5 25 13 35 8 11 28 20 40 50)
\end{array}
\]
6. Solve the following recursion via Master Theorem, if possible. Show your calculations and justify your results. [10 pts]

- \[T(n) = 4T(n/2) + \Theta(n^2) \]

- \[T(n) = 5T(n/2) + \Theta(n^{3/2}) \]

- \[T(n) = T(n/4) + \Theta(\log^2 n) \]

- \[T(n) = 4T(n/4) + \Theta(n \log n) \]

- \[T(n) = 2T(n/3) + \Theta(n \log^2 n) \]
7. **Hashing- Double Hashing** Let \(h_1(k) = k \mod 17 \) and \(h'_2(k) = k \mod 11 \) and \(h_2(k) = h'_2(k) \) if \(h'_2(k) > 0 \), and \(h_2(k) = h'_2(k) + 1 \text{mod} 11 \) otherwise. Let \(h(k, i) = (h_1(k) + ih_2(k)) \text{mod} 17 \). Using the sequence \(h(k, i) \) \(i = 0, 1, 2, \ldots \) place following in a hash table: 21, 67, 31, 37, 54, 6, 23, 40, 7, 33, 50

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\end{array}
\]

Solve the same input with \(h_1 \) and linear probing

\[
\begin{array}{cccccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
\end{array}
\]
8. Build a heap containing the following items: 1 10 30 5 25 35 8 11 15 28 20 40 50 55. **Use Heapify!**
9. Given Heap H_0, apply successively 3 pts each:
i) insert 300, insert 175
ii) apply twice deletemax operation to \(H_o \) (3 pts each)
10. Given binary search tree T_0, apply the following each time to T_0 (5 pts each)
 i) insert 14

$$
\begin{array}{c}
 20 \\
 15 \\
 4 \\
 12 \\
 17 \\
 30 \\
 25 \\
 35 \\
 40 \\
 125
\end{array}
$$
ii) insert 38
iii) delete 17
iv) delete 125